Weyl’s Law

نویسنده

  • MATT STEVENSON
چکیده

These are notes for a talk given in the Student Analysis Seminar at the University of Michigan. The Laplacian on a bounded domain in Rn has a discrete set of Dirichlet eigenvalues, accumulating only at ∞. Let N(λ) be the number of eigenvalues less than λ, then Weyl’s law asserts that the first term of the asymptotic expansion of N(λ) depends only on the dimension and the volume of the domain. Here we sketch the 1912 proof of Weyl, following the expositions of [1], [5], [6].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weyl’s Law in the Theory of Automorphic Forms

For a compact Riemannian manifold, Weyl’s law describes the asymptotic behavior of the counting function of the eigenvalues of the associated Laplace operator. In this paper we discuss Weyl’s law in the context of automorphic forms. The underlying manifolds are locally symmetric spaces of finite volume. In the non-compact case Weyl’s law is closely related to the problem of existence of cusp fo...

متن کامل

A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II

This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2l + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd l , it continues the work done in part I [20] which dealt with even l .

متن کامل

Weyl’s Law and Quantum Ergodicity for Maps with Divided Phase Space

For a general class of unitary quantum maps, whose underlying classical phase space is divided into ergodic and non-ergodic components, we prove analogues of Weyl’s law for the distribution of eigenphases, and the Schnirelman-Zelditch-Colin de Verdière Theorem on the equidistribution of eigenfunctions with respect to the ergodic components of the classical map (quantum ergodicity). We apply our...

متن کامل

WEYL’S LAW FOR THE CUSPIDAL SPECTRUM OF SLn

Let Γ be a principal congruence subgroup of SLn(Z) and let σ be an irreducible unitary representation of SO(n). Let N cus(λ, σ) be the counting function of the eigenvalues of the Casimir operator acting in the space of cusp forms for Γ which transform under SO(n) according to σ. In this paper we prove that the counting function N cus(λ, σ) satisfies Weyl’s law. Especially, this implies that the...

متن کامل

A Remainder Estimate for Weyl’s Law on Liouville Tori

Abstract. The Liouville tori, having an integrable metric of the form (U1(q1)− U2(q2))(dq 2 1 + dq 2 ), allow the separation of variables in the study of the Laplacian spectrum. The asymptotic analysis of the resulting Sturm-Liouville problems allows to reduce the count of the eigenvalues of the spectrum to the count of the lattice points inside a plane domain. The present paper is concerned wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015